The first few lectures are essentially reminders of undergraduate real analysis materials. We will cover some aspects of the theory of differential equations driven by continuous paths with bounded variation. The point is to fix some notations that will be used throughout the course and to stress the importance of the topology of convergence in 1-variation if we are interested in stability results for solutions with respect to the driving signal.

If , we will denote by , the set of subdivisions of the interval , that is can be written

**Definition:** *A continuous path is said to have a bounded variation on , if the 1-variation of on , which is defined as
is finite. The space of continuous bounded variation paths , will be denoted by .*

is not a norm, because constant functions have a zero 1-variation, but it is obviously a semi-norm. If is continuously differentiable on , it is easily seen that

**Proposition:*** Let . The function is additive, i.e for ,
and controls in the sense that for ,
The function is moreover continuous and non decreasing.*

**Proof:** If and , then . As a consequence, we obtain

thus

Let now :

Let . By the triangle inequality, we have

Taking the of yields

which completes the proof. The proof of the continuity and monoticity of is let to the reader

This control of the path by the 1-variation norm is an illustration of the notion of controlled path which is very useful in rough paths theory.

**Definition:** * A map is called superadditive if for all ,
If, in adition, is continuous and , we call a control. We say that a path is controlled by a control , if there exists a constant , such that for every ,
*

Obviously, Lipschitz functions have a bounded variation. The converse is of course not true: has a bounded variation on but is not Lipschitz. However, any continuous path with bounded variation is the reparametrization of a Lipschitz path in the following sense.

**Proposition:** * Let . There exist a Lipschitz function , and a continuous and non-decreasing function such that .*

**Proof:** We assume and consider

It is continuous and non decreasing. There exists a function such that because implies . We have then, for ,

The next result shows that the set of continuous paths with bounded variation is a Banach space.

**Theorem:*** The space endowed with the norm is a Banach space.*

**Proof:** Let be a Cauchy sequence. It is clear that

Thus, converges uniformly to a continuous path . We need to prove that has a bounded variation. Let

be a a subdivision of . There is , such that , thus

Thus, we have

For approximations purposes, it is important to observe that the set of smooth paths is not dense in for the 1-variation convergence topology. The closure of the set of smooth paths in the 1-variation norm, which shall be denoted by is the set of absolutely continuous paths.

**Proposition:*** Let . Then, if and only if there exists such that,
*

**Proof:** First, let us assume that

for some . Since smooth paths are dense in , we can find a sequence in such that . Define then,

We have

This implies that . Conversely, if , there exists a sequence of smooth paths that converges in the 1-variation topology to . Each can be written as,

We still have

so that converges to some in . It is then clear that

**Exercise:** * Let . Show that is the limit in 1-variation of piecewise linear interpolations if and only if .*